Войти
Портал компьютерных советов - Hiper-ru
  •  не удается установить сетевое подключение Ошибка не удается установить соединение сервером
  • Как выгрузить контрагентов из 1с 8
  • Чтение файла, запись в файл
  • Как открыть банковскую карту: инструкция и рекомендации
  • Ностальгия по HTC HD2 Описание htc hd2 wm 6
  • HTC Desire V: характеристики и отзывы
  • Суммарный коэффициент гармонических искажений (THD). Переходный анализ Отрывок, характеризующий Коэффициент нелинейных искажений

    Суммарный коэффициент гармонических искажений (THD). Переходный анализ Отрывок, характеризующий Коэффициент нелинейных искажений

    Цель работы: Научиться измерять коэффициент гармоник с помощью измерителя коэффициента нелинейных искажений.

    1.Оборудование:

    1.1 Аудиокомплекс TR-0157

    1.2 Исследуемый УНЧ

    1.3 Осциллограф С1-73 (С 1 -112)

    1.4 Соединительные кабели

    1.5 Технические описания к приборам

    Краткие теоретические сведения.

    Нелинейные искажения обусловлены наличием в схемах радиоустройств элементов с нелинейными характеристиками (лампы, транзисторы, микросхемы и др.). Нелинейные искажения характеризуются коэффициентом гармоник (Кг), (характеризует отличие формы периодического сигнала от гармонического), который определяется как отношение действующего значения напряжения всех высших гармоник исследуемого напряжения, начиная со второй, к действующему значению первой, т.е. основной гармоники.

    Эта формула используется при исследовании качественных усилителей, у которых Кг составляет (0,2...2)%. В менее качественных усилителях (Кг=2...7%) измерители нелинейных искажений измеряют не коэффициент гармоник, а коэффициент близкий к нему по приближенной формуле

    где U K -напряжение входного сигнала.

    Если коэффициент гармоник Кг<10%, то Кг и К"г практически совпадают, реализация устройств для измерения К"г значительно упрощается.

    Упрощенная структурная схема измерителя нелинейных искажений приведена на рисунке 1.

    Рисунок 1. Структурная схема измерителя нелинейных искажений

    Наиболее распространенным методом измерения коэффициента нелинейных искажений является метод подавления напряжения основной частоты, т.е. метод сравнения действующего значения напряжения высших гармоник с действующим значением исследуемого сигнала.

    Принцип действия измерителя нелинейных искажений см, Б.П. Хромой и Ю.Г. Моисеев «Электроизмерения», М. «Радио и связь», 1985, стр. 252-255 и в техническом описании на прибор.

    Порядок проведения работы.

    3.1 Собрать схему измерения коэффициента гармоник (рисунок 2)



    Рисунок 2. Схема подключения приборов

    3.2 Заземлить приборы.

    3.3 Включить питание.

    3.4 Подготовить приборы к работе:

    3.4.1 Регуляторы «ВЧ», «НЧ» стенда УНЧ установить в среднее положение;

    3.4.2 На аудиокомплексе TR-0157 нажать кнопки “MAINS” и “~U”;

    3.4.3 Используя регулятор “FREQUENCY” и кнопки “FREQ. RANGE” блока “AUDIO GENERATOR” комплекса TR-0157 установить частоту выходного сигнала 1250 Гц;

    3.4.4 Используя ручку “ATTENUATOR dB” (ступенчато, плавно) установить напряжение на выходе стенда 1 В.

    Контроль проводить по вольтметру комплекса используя шкалу “~” и учитывая положения переключателя пределов (красная шкала);

    3.4.5 Органами управления осциллографа добиться устойчивой осциллограммы без видимых искажений сигнала (должно отсутствовать видимое ограничение).

    3.5 Произвести измерение Кг для 3-5 значений выходного напряжения УНЧ указанных в таблице 1. Напряжения устанавливать ручками “ATTENUATOR dB” (ступенчато, плавно) комплекса TR-0157.

    Таблица 1 - Результаты измерений Кг

    U вых, В
    Кг, %

    Для измерения Кг выполнить следующее:

    3.5.1 Нажать кнопку “DIST.” Комплекса TR-0157

    3.5.2 Установить ручку “RANGE %” блока “DIST. METER” в крайнее правое положение (“100 CAL.”)

    3.5.3 Выполнить калибровку прибора по уровню, для этого нажать кнопки “125 Hz” и “X100” (“FREQU. SELECTOR”) блока “DIST. METER” (в этом положении исключается влияние фильтра на исследуемый сигнал). Вытянуть ручку “CALL” блока “DIST. METER”и с её помощью установить стрелку вольтметра комплекса на максимум показаний (при необходимости переключить предел измерений вольтметра);

    3.5.4 Настроить прибор на частоту измеряемого сигнала, для этого нажать кнопку и “X10” (“FREQU. SELECTOR”) блока “DIST. METER”. Регуляторами “∆f “ и “BALLANCE” блока “DIST. METER” добиться минимальных показаний вольтметра комплекса. При этом необходимо постепенно уменьшать предел измерений ручкой “RANGE %” блока “DIST. METER”.

    3.5.6 Повторить измерения для всех значений напряжения, указанных в таблице 1. Для установки необходимого значения напряжения выполнить пп 3.4.4 и 3.4.5, предварительно нажав на кнопку “~U”. После этого вновь повторить калибровку комплекса (пп 3.5.1 – 3.5.6.).

    4.1 Наименование и цель работы.

    4.2 Перечень используемого оборудования.

    4.3 Таблица результатов измерений.

    4.4 Вывод о соответствии значения нелинейных искажений Кг усилителя НЧ требованиям ТУ.

    5. Контрольные вопросы.

    5.1 Чем обусловлены нелинейные искажения в радиосхемах?

    5.2 Дайте определение коэффициента гармоник.

    5.3 Приведите структурную схему измерителя нелинейных искажений, поясните принцип её работы.

    5.4 Каким образом можно измерить коэффициент нелинейных искажений при помощи анализатора гармоник?


    Лабораторная работа №11

    Нелинейными искажениями называют искажения сигнала, обусловленные нелинейностью зависимости между вторичным и первичным сигналами в стационарном режиме. В результате нелинейных безынерционных искажений входного сигнала синусоидальной формы получается выходной сигнал сложной формы y = y0 + v1x + v2x2 + v3x3 + ... где: x - входная величина; y0 - постоянная составляющая; v1 - линейный коэффициент усиления; v2, v3 ... - коэффициенты нелинейных искажений.

    В системе с нелинейной передаточной характеристикой возникают спектральные составляющие, которых не было на входе - продукты нелинейности. При подаче на вход такой системы сигнала с единственной частотой f1 на выходе появятся составляющие с частотами f1, 2f1, 3f1 и т.д. Если же на вход подается сигнал, состоящий из нескольких частот f1, f2, f3, ..., то на выходе системы кроме гармонических составляющих дополнительно появятся и так называемые "комбинационные составляющие" с частотами n1f1 ± n2f2 ± n3f3 ± ..., где n=1, 2, 3, ... При подаче звуков со сплошным спектром получается также сплошной спектр, но с измененной формой огибающей спектра.

    Нелинейные искажения принято оценивать коэффициентом нелинейных искажений, представляющим собой отношение эффективных значений гармоник к эффективному значению суммарного выходного сигнала и измеряется в процентах. Здесь An - амплитуды составляющих с частотами nf. Приведенная рядом упрощенная формула справедлива для случаев, когда искажения невелики (К<=10%). Различают два типа нелинейности: степенную и нелинейность из-за ограничения амплитуды. Последняя делится на ограничение сверху и ограничение снизу (центральное). При первом виде ограничения искажаются только громкие сигналы, при втором - все сигналы, но более слабые искажаются сильнее, чем громкие. Нелинейность искажения гармонического вида и комбинационных частот ощущается как дребезжание, переходящее в хрипы при значительном искажении на высоких частотах. Нелинейные искажения в виде разностных комбинационных частот вызывают ощущение модуляции передачи. При сужении полосы частот нелинейные искажения становятся менее заметными. Линейные искажения изменяют амплитудные и фазовые соотношения между имеющимися спектральными компонентами сигнала и за счет этого искажают его временную структуру. Такие изменения воспринимаются как искажения тембра или «окрашивание» звука.
    При звукопередаче первичные соотношения между частотными компонентами звука должны быть сохранены. В связи с этим, качество любого участка звукового канала оценивается его амплитудно-частотной (сокращенно частотной) характеристикой, для обозначения которой часто используют аббревиатуру АЧХ. Под АЧХ понимают график зависимости коэффициента передачи от частоты сигналов, подаваемых на вход данного участка канала или отдельного звукотехнического устройства. Коэффициент передачи - это отношение величин сигналов на входе усилителя и его выходе.
    Частотная характеристика тракта передачи (частотная зависимость коэффициента передачи) изменяет соотношения между амплитудами частотных составляющих. Это приводит к субъективному ощущению изменения тембра. Показателем степени частотных искажений, возникающих в каком-либо устройстве, служит неравномерность его амплитудно-частотной характеристики, количественным показателем на какой-либо конкретной частоте спектра сигнала является коэффициент частотных искажений.

    Нелинейные искажения вызваны нелинейностью системы обработки и передачи сигнала. Эти искажения вызывают появление в частотном спектре выходного сигнала составляющих, отсутствующих во входном сигнале. Нелинейные искажения представляют собой изменения формы колебаний, проходящих через электрическую цепь (например, через усилитель или трансформатор), вызванные нарушениями пропорциональности между мгновенными значениями напряжения на входе этой цепи и на ее выходе. Это происходит, когда характеристика выходного напряжения нелинейно зависит от входного. Количественно нелинейные искажения оцениваются коэффициентом нелинейных искажений или коэффициентом гармоник. Типовые значения КНИ: 0 % — синусоида; 3 % — форма, близкая к синусоидальной; 5 % — форма, приближенная к синусоидальной (отклонения формы уже заметны на глаз); до 21 % — сигнал трапецеидальной или ступенчатой формы; 43 % — сигнал прямоугольной формы.

    Входного сигнала, к среднеквадратичной сумме спектральных компонентов входного сигнала, иногда используется нестандартизованный синоним - клирфактор (заимств. с нем.). КНИ - безразмерная величина, выражается обычно в процентах. Кроме КНИ уровень нелинейных искажений можно выразить с помощью коэффициента гармонических искажений .

    Коэффициент гармонических искажений - величина, выражающая степень нелинейных искажений устройства (усилителя и др.), равная отношению среднеквадратичного напряжения суммы высших гармоник сигнала, кроме первой, к напряжению первой гармоники при воздействии на вход устройства синусоидального сигнала.

    Коэффициент гармоник так же как и КНИ выражается в процентах. Коэффициент гармоник (K Г ) связан с КНИ (K Н ) соотношением:

    Измерения

    • В низкочастотном (НЧ) диапазоне (до 100-200 кГц) для измерения КНИ применяются измерители нелинейных искажений (измерители коэффициента гармоник).
    • На более высоких частотах (СЧ, ВЧ) используют косвенные измерения с помощью анализаторов спектра или селективных вольтметров .

    Типовые значения КНИ

    • 0 % - форма сигнала представляет собой идеальную синусоиду.
    • 3 % - форма сигнала отлична от синусоидальной, но искажения не заметны на глаз.
    • 5 % - отклонение формы сигнала от синусоидальной заметно на глаз по осциллограмме.
    • 10 % - стандартный уровень искажений, при котором считают реальную мощность (RMS) УМЗЧ .
    • 21 % - например, сигнал трапецеидальной или ступенчатой формы.
    • 43 % - например, сигнал прямоугольной формы.

    См. также

    Литература

    • Справочник по радиоэлектронным устройствам : В 2-х т.; Под ред. Д. П. Линде - М.: Энергия,
    • Горохов П. К. Толковый словарь по радиоэлектронике. Основные термины - М: Рус. яз.,

    Ссылки

    • ОСНОВНЫЕ ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ КАНАЛА ЗВУКОПЕРЕДАЧИ

    Wikimedia Foundation . 2010 .

    Смотреть что такое "" в других словарях:

      коэффициент нелинейных искажений - КНИ Параметр, позволяющий учесть влияние гармоник и комбинационных составляющих на качество сигнала. Численно определяется как отношение мощности нелинейных искажений к мощности неискаженного сигнала, обычно выражается в процентах. [Л.М. Невдяев …

      коэффициент нелинейных искажений - 3.9 коэффициент нелинейных искажений (total distortion): Отношение в процентах среднеквадратичного значения спектральных компонент выходного сигнала акустического калибратора, отсутствующих во входном сигнале, к среднеквадратичному значению… …

      коэффициент нелинейных искажений - netiesinių iškreipių faktorius statusas T sritis fizika atitikmenys: angl. non linear distortion factor vok. Klirrfaktor, m rus. коэффициент нелинейных искажений, m pranc. taux de distorsion harmonique, m … Fizikos terminų žodynas

      КНИ входного тока ИБП Характеризует отклонения формы входного тока ИБП от синусоидальной. Чем больше значение этого параметра, тем хуже это для оборудования, подключенного к той же питающей сети и самой сети, в этом случае ухудшается… … Справочник технического переводчика

      КНИ выходного напряжения ИБП Характеризует отклонения формы выходного напряжения от синусоидальной, обычно приводится для линейной (двигатели, некоторые виды осветительных приборов) и нелинейной нагрузки. Чем выше это значение, тем хуже качество… … Справочник технического переводчика

      коэффициент нелинейных искажений усилителя - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN amplifier distortion factor … Справочник технического переводчика

      Коэффициент нелинейных искажений громкоговорителя - 89. Коэффициент нелинейных искажений громкоговорителя Коэффициент нелинейных искажений Ндп. Коэффициент гармоник Выраженный в процентах квадратный корень из отношения суммы квадратов эффективных значений спектральных составляющих, излучаемых… … Словарь-справочник терминов нормативно-технической документации

      Коэффициент нелинейных искажений ларингофона - 94. Коэффициент нелинейных искажений ларингофона Выраженное в процентах значение квадратного корня из отношения суммы квадратов действующих значений гармоник электродвижущей силы, развиваемой ларингофоном при гармоническом движении воздуха, к… … Словарь-справочник терминов нормативно-технической документации

      допустимый коэффициент нелинейных искажений - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN harmonic tolerance … Справочник технического переводчика

      - (измеритель коэффициента гармоник) прибор для измерения коэффициента нелинейных искажений (коэффициента гармоник) сигналов в радиотехнических устройствах. Содержание … Википедия

    Изменение формы гармонического сигнала, возникающее в результате его прохождения через устройство, содержащее нелинейные элементы, называется нелинейным искажением. Искаженный негармонический сигнал содержит в своем спектре постоянную составляющую, первую гармонику (основную частоту и высшие гармоники с частотами Нелинейное искажение гармонического сигнала оценивается коэффициентом гармоник равным отношению среднеквадратического напряжения гармоник сигнала (кроме первой) к среднеквадратическому значению напряжения первой гармоники:

    Коэффициент гармоник часто выражается в процентах.

    Нелинейные искажения сигнала любой формы оцениваются коэффициентом нелинейности который вычисляется по формуле

    (отношение среднеквадратического значения высших гармонических к среднеквадратическому значению напряжения всех гармоник, т. е. к напряжению сигнала).

    Формулы и связаны соотношением

    из которого следует, что при оба выражения дают практически одинаковые результаты.

    Имеются и другие методы оценки нелинейности - комбинационный, статистический, которые больше характеризуют нелинейные свойства радиотехнических устройств, чем искажения сигналов.

    Рис. 6-9. Структурная схема измерения напряжения гармоник

    Нелинейные искажения сигнала измеряют гармоническим методом, который реализуется двумя способами - аналитическим и интегральным. Аналитический способ основан на формуле и осуществляется по схеме рис. 6-9. Гармонический сигнал генератора подают на вход измеряемого объекта на выходе которого включен анализатор спектра или анализатор гармоник. С помощью анализатора спектра получают спектрограмму выходного сигнала, измеряют абсолютные или относительные значения амплитуд высших гармонических и первой гармоники и по формуле вычисляют коэффициент гармоник. Если используют анализатор гармоник, то его настраивают вручную на каждую последующую гармонику, записывают их значения и вычисляют по той же формуле. Аналитический способ трудоемок и применяется с целью выяснения роли каждой гармоники в отдельности.

    Интегральный способ основан на формуле и позволяет оценить влияние всех высших гармонических на форму сигнала без определения их значений в отдельности. Для этого сначала измеряют среднеквадратическое значение сигнала, а затем то значение высших

    гармонических, которое останется после подавления напряжения первой гармоники. Интегральный способ часто называют способом подавления напряжения первой гармоники (основной частоты).

    Измерение коэффициента нелинейных искажений осуществляют с помощью прибора - измерителя нелинейных искажений (рис. 6-10). Согласующее устройство СУ предназначено для обеспечения симметричного или несимметричного входа и согласования выходного сопротивления объекта с входным сопротивлением измерителя.

    Рис. 6-10. Измеритель нелинейных искажений: а - структурная схема; б - схема режекторного фильтра

    С помощью переключателя режима работы ПРР осуществляются режим калибровки когда измеряется напряжение всего сигнала, режим измерения когда измеряется напряжение высших гармонических, и режим вольтметра для обычного измерения среднеквадратического значения любого напряжения.

    Аттенюатор предназначен для установки уровня напряжения, обеспечивающего нормальную работу последующих узлов прибора. Входной усилитель должен иметь полосу пропускания от минимальной частоты исследуемого сигнала до -кратного значения его верхней частоты. Частотная, фазовая и амплитудная характеристики усилителя в этой полосе линейны. Режекторный усилитель предназначен для подавления напряжения первой гармоники с помощью заграждающего RC-фильтра (моста Вина), включенного в цепь обратной связи. Фильтр рис. 6-10, б) настраивается на частоту первой гармоники

    Ступенями, кратными 10, путем переключения резисторов и плавно - с помощью сдвоенного блока конденсаторов переменной емкости С. Обострение характеристики режекторного фильтра, необходимое для точной балансировки моста, полного подавления напряжения первой гармоники и уменьшения погрешности измерения, достигается выполнением равенства Ручки управления резисторами обозначены: «Балансировка: грубо, точно». Вольтметр состоит из аттенюатора усилителя УВ и среднеквадратического преобразователя оптронного типа с магнитоэлектрическим индикатором. Шкала индикатора градуируется в единицах напряжения, процентах и децибелах коэффициента нелинейности.

    Для визуального наблюдения формы сигнала на входе и выходе измеряемого устройства и высших гармонических после фильтрации первой гармоники предусмотрены зажимы для включения осциллографа. Имеется калибровочный генератор для проверки вольтметра.

    Измерители нелинейных искажений выпускаются для работы в диапазоне частот исследуемого сигнала от 20 Гц до с полосой пропускания до Они широко используются для контроля качества любых усилительных устройств и модуляционных трактов. Коэффициент нелинейности измеряется в пределах при входных напряжениях от 0,1 до 100 В. Пределы измерения напряжения при работе в режиме вольтметра в диапазоне частот 20 Гц- 1 МГц. Погрешность измерения зависит от точности настройки режекторного фильтра, которая осуществляется последовательным приближением показания вольтметра к минимуму, т. е. к напряжению одних высших гармоник. Погрешность составляет

    При измерении нелинейных искажений сигнала одновременно производится оценка нелинейности того устройства, через которое прошел сигнал. Однако оценка эта неточная, так как производится при воздействии одиночного сигнала и в одной точке диапазона частот. В реальных рабочих условиях на вход радиотехнического усилителя в большинстве случаев поступают случайные сигналы с широким спектром или множество детерминированных сигналов различных частот. Поэтому продукты нелинейности возникают во всей полосе пропускания измеряемого объекта.

    Статистический метод позволяет наиболее полно

    охарактеризовать нелинейные свойства объекта в условиях» хорошо имитирующих рабочие. В качестве источника сигнала используется низкочастотный генератор шума (рис. 6-11, а) с равномерным спектром в диапазоне рабочих частот измеряемого объекта Напряжение шума подается на режекторный фильтр с помощью которого из спектра входного сигнала вырезается узкая полоса составляющих сигнала, расположенных вокруг средней частоты полосы пропускания режекторного фильтра (рис. 6-11, б). На выходе измеряемого объекта в этой полосе образуются составляющие выходного сигнала, являющиеся продуктами нелинейности.

    Рис. 6-11. Измерение нелинейных искажений статистическим методом: а - структурная схема; б - спектральная плотность сигнала на входе измеряемого объекта; в - то же на выходе

    Напряжение этих составляющих измеряют селективным вольтметром настроенным на частоту . Напряжение полного сигнала на выходе объекта измеряют обычным широкополосным вольтметром В среднеквадратического значения (рис. 6-11, в). Значение нелинейности, измеренной статистическим методом,

    С помощью набора режекторных фильтров с разными средними частотами можно измерить и построить зависимость нелинейности от частоты во всем рабочем диапазоне объекта.

    Если на вход усилителя подано синусоидальное напряжение, то усиленное напряжение на выходе будет не синусоидальным, а более сложным. Оно состоит из ряда простых синусоидальных колебаний - основного и высших гармоник. Таким образом, усилитель добавляет лишние гармоники, которых не было на входе усилителя.

    Рис.2 - Нелинейные искажения

    На рис.2 показано синусоидальное напряжение на входе усилителя Uвx и искаженное несинусоидальное напряжение на выходе Uвых. В данном случае усилитель вносит вторую гармонику. На графике напряжения Uвых штрихом показаны полезная первая гармоника (основное колебание), имеющая одинаковую частоту со входным напряжением, и вредная вторая гармоника с удвоенной частотой. Выходное напряжение является суммой этих двух гармоник.
    Искажения формы усиливаемых колебаний, т.е. добавление лишних гармоник к основному колебанию, называют нелинейными искажениями. Они проявляют себя в том, что звук становится хриплым, дребезжащим. Для оценки нелинейных искажений служит коэффициент нелинейных искажений kH, который показывает, какой процент составляют все лишние гармоники, созданные самим усилителем, по отношению к основному колебанию 1
    Если kn меньше 5%, т. е. если добавленные усилителем гармоники в сумме составляют не более 5% первой гармоники, то ухо не замечает искажения. При коэффициенте нелинейных искажений больше 10% хриплость звука и дребезжание уже портят впечатление от художественных передач. При kH более 20% искажения недопустимы и даже речь становится неразборчивой.
    Нелинейные искажения возникают и при усилении колебаний сложной формы при передаче речи и музыки. В этом случае также искажается форма усиливаемых колебаний и добавляются лишние гармоники. Сложные колебания сами состоят из гармоник, которые должны быть правильно воспроизведены усилителем. Их не следует путать с добавочными гармониками, которые создает сам усилитель. Гармоники входного напряжения являются полезными, так как они определяют тембр звука, а гармоники, внесенные усилителем,- 1 вредны. Они создают нелинейные искажения.
    Причинами нелинейных искажений в усилителях являются: непрямолинейность характеристик ламп и транзисторов, наличие тока управляющей сетки в лампах и магнитное насыщение сердечников трансформаторов или дросселей низкой частоты. Значительные нелинейные искажения создаются также в громкоговорителях, телефонах, микрофонах, звукоснимателях.
    3. Другие виды искажений . Наличие в усилительном устройстве реактивных сопротивлений приводит к появлению фазовых искажений. Фазовые сдвиги между различными колебаниями на выходе усилителя получаются не такими, как на входе. При воспроизведении звуков эти искажения не играют роли, так как органы слуха человека не ощущают их, но в ряде случаев, например в телевидении, они оказывают вредное влияние.
    Каждый усилитель создает искажения динамического диапазона. Происходит его сжатие, т. е. отношение самого сильного колебания к самому слабому на выходе усилителя получается меньше, чем на входе. Это нарушает естественность звучания. С целью уменьшения таких искажений иногда вводят специальное устройство для расширения динамического диапазона, называемое расширителем (экспандером). Сжатие динамического диапазона происходит также и в электроакустических приборах.

    Основные параметры усилителей

    Любой усилитель, предназначенный для обработки медико-биолгических сигналов, может быть представлен в виде активного четырехполюсника (рис.1.1). Источник сигнала с ЭДС Евх и внутренним сопротивлением Ri подключается ко входу усилителя. Во входной цепи протекает входной ток Iвх, величина которого зависит от входного сопротивления усилителя Rвх и внутреннего сопротивления источника сигнала. За счет падения напряжения на внутреннем сопротивлении источника сигнала напряжение на входе, которое собственно и усиливается усилителем, отличается от ЭДС источника сигнала:



    Рисунок 1.1 - Эквивалентная схема усилителя

    Выходным током усилителя является ток нагрузки Rн. Величина этого тока зависит от выходного напряжения, которое отличается от напряжения холостого хода kUвх за счет выходного сопротивления усилителя


    Для оценки свойств усилителя вводится ряд параметров.
    - Коэффициенты усиления по напряжению и току


    Эти коэффициенты показывают во сколько раз изменяются значения напряжения и тока на выходе по сравнению с входными значениями. Коэффициент усиления по мощности может быть найден как


    У любого усилителя K P >>1, в то время как коэффициенты усиления по току и напряжению могут быть меньше единицы. Однако если одновременно K I <1 и K U <1, устройство не может считаться усилителем.
    Необходимо отметить, что большинство схем усилителей содержат в своем составе реактивные элементы (емкости и индуктивности) , поэтому в общем случае коэффициент усиления усилителя будет комплексным

    Где угол определяет величину сдвига фазы сигнала при его прохождении со входа на выход.
    Амплитудно-частотная характеристика (АЧХ) усилителя определяет зависимость коэффициента усиления от частоты усиливаемого сигнала. Примерный вид АЧХ усилителя показан на рис.1.2. За коэффициент усиления К 0 принимают максимальное значение коэффициента на так называемой "средней" частоте. Две характерные точки на АЧХ определяют понятие "полоса пропускания" усилителя. Частоты, на которых коэффициент усиления уменьшается в раз (или на 3дб) называются граничными частотами. На рис. 1.2 f 1 является нижней граничной частотой f Н, а f 2 – верхней граничной частотой усиления (f В). Разность:

    F = f В – f Н

    называется полосой пропускания усилителя, которая определяет рабочий частотный диапазон усилителя.
    В общем АЧХ показывает, как изменяется амплитуда выходного сигнала при неизменной амплитуде входного сигнала в частотном диапазоне, при этом считается, что форма сигнала не изменяется. Для оценки изменения коэффициента усиления с изменением частоты вводится понятие частотных искажений

    М Н = М В = . Частотные искажения относятся к разряду линейных, т.е. появление которых не приводит к искажению формы исходного сигнала.
    По виду АЧХ усилители можно разделить на несколько классов.
    Усилители постоянного тока: f Н = 0Гц, f В = (103 3 - 108 8) Гц;
    Усилители звуковой частоты: f Н = 20 Гц, f В = (15 - 20) · 10Гц;
    Усилители высокой частоты: f Н = 20*103 Гц, f В = (200 - 300) · 103 3 Гц.
    Узкополосные (избирательные) усилители. Отличительной особенностью последних является то, что они, практически, усиливают одну гармонику из всего спектра частот сигнала и у них отношение верхней и нижней граничных частот составляет:


    Рисунок 1. 2- АЧХ усилителя

    Амплитудная характеристика усилителя отражает особенности изменения величины выходного сигнала при изменении входного. Как видно из рис. 1.3 выходное напряжение не равно нулю (UВЫХmin) при отсутствии входного напряжения. Это обусловлено внутренними шумами усилителя, за счет чего ограничивается минимальное значение входного напряжения, которое может быть подано на вход усилителя и определяет его чувствительность:


    Значительное увеличение входного напряжения(точка 3) приводит к тому, что амплитудная характеристика становится нелинейной и дальнейшее нарастание выходного напряжения прекращается (точка 5). Это связано с насыщением каскадов усилителя. Допустимым считается такое значение входного напряжения, при котором выходное напряжение не превышает UВЫХmax , которое, как видно из рис.1.3, располагается на границе линейного участка амплитудной характеристики. Амплитудная характеристика определяет динамический диапазон усилителя:


    Иногда для удобства динамический диапазон вычисляют в децибеллах, как:


    Рисунок 1. 3 - Амплитудная характеристика усилителя

    Коэффициент нелинейных искажений (коэффициент гармоник) усилителя определяет степень искажения формы синусоидального сигнала в процессе усиления. Искажения сигнала означают, что в его спектре наряду с основной (первой) гармоникой появляются гармоники более высоких порядков. Исходя из этого, коэффициент нелинейных искажений может быть найден, как:

    где U i – напряжение гармоники с номером i>1. Нетрудно увидеть, что при отсутствии в выходном сигнале высших гармоник, К Г = 0, т.е. синусоидальный сигнал со входа на выход передается без искажений. Входное и выходное сопротивление оказывают довольно ощутимое влияние на работу усилителя. При усилении изменяющихся или переменных сигналов сопротивления могут быть найдены как:


    На постоянном токе эти параметры могут быть определены по упрощенным формулам

    При определении входного и выходного сопротивлений необходимо помнить, что в ряде случаев они могут иметь комплексный характер за счет реактивных элементов схемы. В этом случае могут возникнуть значительные частотные искажения сигнала, особенно в диапазоне высоких частот. Усиление сотовой связи: усилитель сотового сигнала gsm.

    Рассмотрим основные характеристики усилителей.

    Амплитудная характеристика – это зависимость амплитуды выходного напряжения (тока) от амплитуды входного напряжения (тока) (рис. 9.2). Точка 1 соответствует напряжению шумов, измеряемому при Uвх=0, точка 2 – минимальному входному напряжению, при котором на выходе усилителя можно различать сигнал на фоне шумов. Участок 2–3 – это рабочий участок, на котором сохраняется пропорциональность между входным и выходным напряжением усилителя. После точки 3 наблюдаются нелинейные искажения входного сигнала. Степень нелинейных искажений оценивается коэффициентом нелинейных

    искажений (или коэффициентом гармоник):

    ,

    где U1m, U2m, U3m, Unm – амплитуды 1-й (основной), 2, 3 и n-ой гармоник выходного напряжения соответственно.

    Величина характеризует динамический диапазон усилителя.

    Рис. 9.2. Амплитудная характеристика усилителя

    Амплитудно-частотная характеристика (АЧХ) усилителя – это зависимость модуля коэффициента усиления от частоты (рис. 9.3). Частоты fн и fв называются нижней и верхней граничными частотами, а их разность

    (fн–fв) – полосой пропускания усилителя.

    Рис. 9.3. Амплитудно-частотная характеристика усилителя

    При усилении гармонического сигнала достаточно малой амплитуды искажения формы усиленного сигнала не возникает. При усилении сложного входного сигнала, содержащего ряд гармоник, эти гармоники усиливаются усилителем неодинаково, так как реактивные сопротивления схемы по-разному зависят от частоты, и в результате это приводит к искажению формы усиленного сигнала.

    Такие искажения называются частотными и характеризуются коэффициентом частотных искажений:

    Где Кf – модуль коэффициента усиления на заданной частоте.

    Коэффициенты частотных искажений

    И называются соответственно коэффициентами искажений на нижней и верхней граничных частотах.

    АЧХ может быть построена и в логарифмическом масштабе. В этом случае она называется ЛАЧХ (рис. 9.4), коэффициент усиления усилителя выражается в децибелах, а по оси абсцисс откладываются частоты через декаду (интервал частот между 10f и f).

    Рис. 9.4. Логарифмическая амплитудно-частотная характеристика

    усилителя (ЛАЧХ)

    Обычно в качестве точек отсчета выбирают частоты, соответствующие f=10n. Кривые ЛАЧХ имеют в каждой частотной области определенный наклон. Его измеряют в децибелах на декаду.

    Фазо-частотная характеристика (ФЧХ) усилителя – это зависимость угла сдвига фаз между входным и выходным напряжениями от частоты. Типовая ФЧХ приведена на рис. 9.5. Она также может быть построена в логарифмическом масштабе.

    В области средних частот дополнительные фазовые искажения минимальны. ФЧХ позволяет оценить фазовые искажения, возникающие в усилителях по тем же причинам, что и частотные.

    Рис. 9.5. Фазо-частотная характеристика (ФЧХ) усилителя

    Пример возникновения фазовых искажений приведен на рис. 9.6, где показано усиление входного сигнала, состоящего из двух гармоник (пунктир), которые при усилении претерпевают фазовые сдвиги.

    Рис. 9.6. Фазовые искажения в усилителе

    Переходная характеристика усилителя – это зависимость выходного сигнала (тока, напряжения) от времени при скачкообразном входном воздействии (рис. 9.7). Частотная, фазовая и переходная характеристики усилителя однозначно связаны друг с другом.

    Рис. 9.7. Переходная характеристика усилителя

    Области верхних частот соответствует переходная характеристика в области малых времен, области нижних частот – переходная характеристика в области больших времен.

    По характеру усиливаемых сигналов различают:

    o Усилители непрерывных сигналов. Здесь пренебрегают процессами установления. Основная характеристика – частотная передаточная.

    o Усилители импульсных сигналов. Входной сигнал изменяется настолько быстро, что переходные процессы в усилителе являются определяющими при нахождении формы сигнала на выходе. Основной характеристикой является импульсная передаточная характеристика усилителя.

    По назначению усилителя делятся на:

    o усилители напряжения,

    o усилители тока,

    o усилители мощности.

    Все они усиливают мощность входного сигнала. Однако собственно усилители мощности должны и способны отдать в нагрузку заданную мощность при высоком коэффициенте полезного действия.

    1. Составить фрагменты программ в мнемокодах и машинных кодах для следующих операций: