Войти
Портал компьютерных советов - Hiper-ru
  • Где хранятся скриншоты в Стиме?
  • Новые планшеты асус. Планшеты Asus. Лучшие недорогие планшеты Asus
  • Как выводить биткоины: подробная инструкция
  • Индекс автомобильных номеров австрии
  • Как поверить, есть ли подходящие новые версии Android
  • Напоминание о днях рождения, событиях, делах Напоминание на каждый день
  • Частота шины материнской платы что. Достаточная скорость шины материнской платы. Ширина, скорость и полоса пропускания шины

    Частота шины материнской платы что. Достаточная скорость шины материнской платы. Ширина, скорость и полоса пропускания шины

    Здравствуйте, уважаемые читатели блога сайт. Очень часто на просторах интернета можно встретить много всякой компьютерной терминологии, в частности - такое понятие, как "Системная шина". Но мало кто знает, что именно означает этот компьютерный термин. Думаю, сегодняшняя статья поможет внести ясность.

    Системная шина (магистраль) включает в себя шину данных, адреса и управления. По каждой их них передается своя информация: по шине данных - данные, адреса - соответственно, адрес (устройств и ячеек памяти), управления - управляющие сигналы для устройств. Но мы сейчас не будем углубляться в дебри теории организации архитектуры компьютера, оставим это студентам ВУЗов. Физически магистраль представлена в виде (контактов) на материнской плате.

    Я не случайно на фотографии к этой статье указал на надпись "FSB". Дело в том, что за соединение процессора с чипсетом отвечает как раз шина FSB, которая расшифровывается как "Front-side bus" - то есть "передняя" или "системная". И, на который обычно ориентируются при разгоне процессора, например.

    Существует несколько разновидностей шины FSB, например, на материнских платах с процессорами Intel шина FSB обычно имеет разновидность QPB, в которой данные передаются 4 раза за один такт. Если речь идет о процессорах AMD, то там данные передаются 2 раза за такт, а разновидность шины имеет название EV6. А в последних моделях CPU AMD, так и вовсе - нет FSB, ее роль выполняет новейшая HyperTransport.

    Итак, между и центральным процессором данные передаются с частотой, превышающей частоту шины FSB в 4 раза. Почему только в 4 раза, см. абзац выше. Получается, если на коробке указано 1600 МГц (эффективная частота), в реальности частота будет составлять 400 МГц (фактическая). В дальнейшем, когда речь пойдет о разгоне процессора (в следующих статьях), вы узнаете, почему необходимо обращать внимание на этот параметр. А пока просто запомните, чем больше значение частоты, тем лучше.

    Кстати, надпись "O.C." означает, буквально "разгон", это сокращение от англ. Overclock, то есть это предельно возможная частота системной шины, которую поддерживает материнская плата. Системная шина может спокойно функционировать и на частоте, существенно ниже той, что указана на упаковке, но никак не выше нее.

    Вторым параметром, характеризующим системную шину, является. Это то количество информации (данных), которая она может пропустить через себя за одну секунду. Она измеряется в Бит/с. Пропускную способность можно самостоятельно рассчитать по очень простой формуле: частоту шины (FSB) * разрядность шины. Про первый множитель вы уже знаете, второй множитель соответствует разрядности процессора - помните, x64, x86(32)? Все современные процессоры уже имеют разрядность 64 бита.

    Итак, подставляем наши данные в формулу, в итоге получается: 1600 * 64 = 102 400 МБит/с = 100 ГБит/с = 12,5 ГБайт/с. Такова пропускная способность магистрали между чипсетом и процессором, а точнее, между северным мостом и процессором. То есть системная, FSB, процессорная шины - все это синонимы . Все разъемы материнской платы - видеокарта, жесткий диск, оперативная память "общаются" между собой только через магистрали. Но FSB не единственная на материнской плате, хотя и самая главная, безусловно.

    Как видно из рисунка, Front-side bus (самая жирная линия) по-сути соединяет только процессор и чипсет, а уже от чипсета идет несколько разных шин в других направлениях: PCI, видеоадаптера, ОЗУ, USB. И совсем не факт, что рабочие частоты этих подшин должны быть равны или кратны частоте FSB, нет, они могут быть абсолютно разные. Однако, в современных процессорах часто контроллер ОЗУ перемещается из северного моста в сам процессор, в таком случае получается, что отдельной магистрали ОЗУ как бы не существует, все данные между процессором и оперативной памятью передаются по FSB напрямую с частотой, равной частоте FSB.

    Пока что это все, спасибо.

    Процессоры архитектуры X86 (CPU) создаются для взаимодействия с материнским платами, которые имеют жестко заданную частоту системной шины (Front Side Bus или FSB), которая например, в большинстве компьютеров может составлять 133 МГц. Частота системной шины является одним из двух факторов, которые предопределяют рабочую частоту центрального процессора. Учитывая такую связь, технически возможно увеличение скорости системной шины для увеличения скорости работы центрального процессора, но это является рискованной затеей и может привести к негативным эффектам, например к неисправности материнской платы .

    FSB и множитель

    Центральный процессор обычно имеет встроенный умножитель частоты или множитель, который наряду с частотой системной шины, влияет на итоговую частоту работы. Например, современный процессор Intel Core i7-860 имеет множитель 21Х (multiplier) и рассчитан на работу в материнских платах с FSB 133 МГц, что при взаимном умножении дает результирующую частоту процессора 2.8 ГГц. Частота процессора, которая пишется обычно на защитной металлической крышке процессора или на упаковке к нему, на самом деле не является жесткой величиной и может быть изменена путем увеличения частоты системной шины или изменением коэффициента (множителя).

    Разгон (оверклокинг)

    Процесс увеличения тактовой частоты системной шины до более высоких значений, поддерживаемых процессором, получил название разгон или оверклокинг. Например, увеличение частоты системной шины с 133 МГц до 150 МГц приведет к росту таковой частоты процессора Intel Core i7-860 до значения 3.15 ГГц (умножьте 150 МГц на 21 и вы получите эту цифру, которую нужно перевести в гигагерцы). Разгон процессора позволяет увеличить производительность системы, которая нужна для выполнения приложений, требовательных к ресурсам процессора. Оверклокинг также помогает сэкономить ваши деньги – благодаря ему вы можете купить более низкочастотный процессор с хорошим разгонным потенциалом, нарастить частоту системной шины и добиться от этого процессора производительности, характерной для более дорогих и высокочастотных процессоров (из той же линейки).

    Риск разгона

    Большинство компонентов персонального компьютера используют частоту системной шины для синхронной работы друг с другом. Поэтому не стоит забывать, что выполняя разгон процессора и наращивая эту частоту, вы также увеличиваете ее для других компонентов системы, в том числе и кэш память процессора . Это может привести к выходу режимов их работы за пределы нормы и нарушению работы системы в целом. Эффект от разгона тяжело предвидеть – он может привести к избыточному выделению тепла и конфликтам в работе ЦПУ и прочих компонентов. Более того компьютер может полностью выйти из строя или наоборот, вы просто не сможете разогнать компьютер из-за установленных производителем ограничений.

    Если же вам повезет, компьютер может продолжить работу в нормальном режиме, но станет намного быстрее. Вам стоит учесть, что разгон компонентов системы автоматически аннулирует гарантийные обязательства производителя. Обычно разгону подвержены компьютеры ручной сборки, собранные энтузиастами или мелкими компаниями из специально подобранных компонентов. Крупные компании типа Dell и HP защищают свою продукцию от подобных рискованных операций.

    Понижение частот

    Отдельно стоит сказать о том, что возможен обратный процесс – снижение частоты системной шины. Это приводит к снижению производительности системы и снижению выделения тепла ее компонентами. Такая схема действий предпринимается, когда возникают проблемы с охлаждением системы. Например, если компьютер попадает в агрессивную среду или замкнутое непроветриваемое помещение. Кроме того, понижение частоты может применяться для снижения энергопотребления в тех случаях, когда высокая производительность от процессора не требуется.

    Блокирование множителя

    Как мы уже разобрались, изменение частоты системной шины FSB приводит к изменению рабочих частот всех компонентов системы, а вот изменение коэффициента умножения более безопасно, так как влияет только на сам процессор. Поэтому разгон путем увеличения множителя имеет гораздо больше шансов на успех. Но, к превеликому сожалению любителей разгона, большинство процессоров (особенно Intel), имеют заблокированный множитель, который не может быть изменен. Только некоторые модели процессоров премиум-класса имеют разблокированный множитель и рассчитаны они именно на любителей оверклокинга.

    Михаил Тычков aka Hard

    Доброго времени суток.

    Если процессор – это сердце персонального компьютера, то шины – это артерии и вены по которым текут
    электрические сигналы. Строго говоря, это каналы связи, применяемые для организации взаимодействия между устройствами
    компьютера. Кстати, если Вы думаете, что те разъемы, куда вставляются платы расширения и есть шины, то Вы жестоко
    ошибаетесь. Это интерфейсы (слоты, разъемы), с их помощью осуществляется подключение к шинам, которых, зачастую, вообще
    не видно на материнских платах.

    Существует три основных показателя работы шины. Это тактовая частота, разрядность и скорость передачи
    данных. Начнем по порядку.

    Тактовая частота

    Работа любого цифрового компьютера зависит от тактовой частоты, которую определяет
    кварцевый резонатор. Он представляет собой оловянный контейнер в который помещен кристалл кварца. Под воздействием
    электрического напряжения в кристалле возникают колебания электрического тока. Вот эта самая частота колебания и
    называется тактовой частотой. Все изменения логических сигналов в любой микросхеме компьютера происходят через
    определенные интервалы, которые называются тактами. Отсюда сделаем вывод, что наименьшей единицей измерения времени для
    большинства логических устройств компьютера есть такт или еще по другому – период тактовой частоты. Проще говоря – на
    каждую операцию требуется минимум один такт (хотя некоторые современные устройства успевают выполнить несколько операций
    за один такт). Тактовая частота, применительно к персональным компьютерам, измеряется в МГц, где Герц – это одно колебание
    в секунду, соответственно 1 МГц – миллион колебаний в секунду. Теоретически, если системная шина Вашего компьютера
    работает на частоте в 100 МГц, то значит она может выполнять до 100 000 000 операций в секунду. К слову сказать,
    совсем не обязательно, что бы каждый компонент системы обязательно что-либо выполнял с каждым тактом. Существуют так
    называемые пустые такты (циклы ожидания), когда устройство находится в процессе ожидания ответа от какого либо другого
    устройства. Так, например, организована работа оперативной памяти и процессора (СPU), тактовая частота которого значительно
    выше тактовой частоты ОЗУ.

    Разрядность

    Шина состоит из нескольких каналов для передачи электрических сигналов. Если говорят,
    что шина тридцатидвухразрядная, то это означает, что она способна передавать электрические сигналы по тридцати двум каналам
    одновременно. Здесь есть одна фишка. Дело в том, что шина любой заявленной разрядности (8, 16, 32, 64) имеет, на самом
    деле, большее количество каналов. То есть, если взять ту же тридцатидвухразрядную шину, то для передачи собственно данных
    выделено 32 канала, а дополнительные каналы предназначены для передачи специфической информации.

    Скорость передачи данных

    Название этого параметра говорит само за себя. Он высчитывается по формуле:

    тактовая частота * разрядность = скорость передачи данных

    Сделаем расчет скорости передачи данных для 64 разрядной системной шины, работающей на тактовой частоте
    в 100 МГц.

    100 * 64 = 6400 Мбит/сек

    6400 / 8 = 800 Мбайт/сек

    Но полученное число не является реальным. В жизни на шины влияет куча всевозможных факторов:
    неэффективная проводимость материалов, помехи, недостатки конструкции и сборки а также многое другое. По некоторым
    данным, разность между теоретической скоростью передачи данных и практической может составлять до 25%.

    За работой каждой шины следят специально для этого предназначенные контроллеры. Они входят в состав
    набора системной логики (чипсет).

    Теперь поговорим конкретно о тех шинах, которые присутствуют на материнской плате. Основной
    считается системная шина FSB (Front Side Bus). По этой шине передаются данные между процессором и оперативной памятью,
    а также между процессором и остальными устройствами персонального компьютера. Вот тут вот есть один подводный камень.
    Дело в том, что работая над материалом этой статьи, я столкнулся с одной неразберихой – существует такая фигня, как шина
    процессора. По одним данным системная шина и шина процессора это есть одно и тоже, а по другим – нет. Я перерыл кучу книг
    и пересмотрел кучу схем. Вывод: поначалу процессор подключался к основной системной шине через собственную, процессорную,
    шину, в современных же системах эти шины стали одним целым. Мы говорим – системная шина, а подразумеваем процессорную, мы
    говорим - процессорная шина, а подразумеваем системную. Двинемся дальше. Фраза: «Моя материнская плата работает на частоте
    100 МГц» означает, что именно системная шина работает на тактовой частоте в 100 МГц. Разрядность FSB равна разрядности
    CPU. Если Вы используете 64 разрядный процессор, а тактовая частота системной шины 100 МГц, то скорость передачи данных
    будет равна 800 Мбайт/сек.

    Кроме системной шины на материнской плате есть еще шины ввода/вывода, которые отличаются друг от друга
    по архитектуре. Перечислю некоторые из них:

    Материнская плата — это печатная плата (PCB), которая соединяет процессор, память и все ваши платы расширения вместе для полноценной работы компьютера. При выборе материнской платы необходимо учитывать ее форм-фактор. Форм-фактор — это мировой стандарт, определяющий размер материнской платы, расположение интерфейсов, портов, сокетов, слотов, место крепления к корпусу, разъем для подключения блока питания.

    Форм-фактор

    Большинство материнских плат, сделанные в настоящее время являются ATX, такие материнские платы имеют размеры 30.5 x 24.4 см. Немного меньше (24.4 x 24.4 см) форм-фактор mATX. Материнские платы mini-ITX имеют совсем скромные размеры (17 х 17 см). Материнская плата ATX имеет стандартные разъемы, такие как PS/2 порты, порты USB, параллельный порт, последовательный порт, встроенный в материнскую плату биос и т.д. ATX материнская плата устанавливается в стандартную корпус.

    Чипсет материнской платы

    Как правило, в материнскую плату установлены различные слоты и разъемы. Чипсет — это все микросхемы, имеющиеся на материнской плате, которые обеспечивают взаимодействие всех подсистем компьютера. Основными производителями чипсетов на данный момент являются компании Intel, nVidia и ATI (AMD). В состав чипсета входят северный и южный мост .

    Схема чипсета Intel P67

    Северный мост предназначен для поддержки видеокарты и оперативной памяти и непосредственной работы с процессором. Кроме того, северный мост контролирует частоту системной шины. Однако сегодня часто контроллер встраивается в процессор, это значительно снижает тепловыделение и упрощает функционирование системных контроллеров

    Южный мост обеспечивает функции ввода и вывода, и содержащий контроллеры устройств расположенных на периферии, таких как аудио, жёсткий диск и прочие. Также в нём содержаться контроллеры шин, способствующие подключению периферийных устройств, к примеру, USB или шины PCI.

    Скорость работы компьютера зависит от того, насколько согласовано взаимодействие чипсета и процессора. Для большей эффективности процессор и чипсет должны быть от одного производителя. Кроме того, необходимо учитывать, что чипсет должен соответствовать объему и типу оперативной памяти.

    Сокет процессора

    Soket — это вид разъёма в материнской карте, который будет соответствовать разъёму вашего процессора и предназначенный для его подключения. Именно разъём сокета разделяет материнские платы.

    • Сокеты начинающиеся на AM, FM и S поддерживают процессоры фирмы AMD.
    • Сокеты начинающиеся на LGA имеют поддержку процессоров фирмы Intel.

    Какой именно тип сокета соответствует вашему процессору, вы узнаете из инструкции к самому процессору, а вообще выбор материнской платы происходит одновременно с выбором процессора, их как бы подбирают друг для друга.

    Слоты оперативной памяти

    При выборе материнской платы большое значение имеет тип и частота оперативной памяти. На данный момент используются память DDR3 с частотой 1066, 1333, 1600, 1800 или 2000 МГц, до нее была DDR2, DDR и SDRAM. Память одного типа не удастся подключить к материнской плате, если ее разъемы предназначены для памяти другого типа. Хотя на данный момент существуют модели материнских плат со слотами и для DDR2, и для DDR3. Несмотря на то, что оперативная память подключиться к материнской плате, предназначенной для большей частоты, лучше этого не делать, так как это негативно скажется на работе компьютера. Если в будущем предполагается увеличить объем оперативной памяти, то необходимо выбирать материнскую плату с большим количеством разъемов для нее (максимальное количество – 4).

    PCI слот

    В слот PCI можно подключать карты расширения, такие как звуковая карта, модем, ТВ-тюнеры, сетевая карта, карта беспроводной сети Wi-Fi и т.д. Хотим отметить, что чем больше данных слотов, тем больше дополнительных устройств вы сможете подключить к материнской плате. Наличие двух и более одинаковых PCI-E x16 слотов для подключения видеокарт говорит о возможности их одновременной и параллельной работы.

    В виду того, что современные дополнительные устройства включают в себя системы охлаждения и просто имеют габаритный вид, они могут мешать подключению в соседний слот иного устройства. Поэтому даже если вы не собираетесь подключать к компьютеру кучу внутренних дополнительных плат, всё равно, стоит выбирать материнскую плату с как минимум 1-2 слотами PCI, чтобы вы смогли без проблем подключить даже минимальный набор устройств.

    PCI Express

    Слот PCI Express необходим для подключения PCI-E видеокарты. Некоторые платы, имеющие 2 и более разъема pci-e поддерживают конфигурацию SLI или Crossfire, для подключения нескольких видеокарт одновременно. Следовательно, если необходимо подключить одновременно две или три одинаковых видеокарты, например, для игр или работы с графикой, необходимо выбирать материнскую плату с соответствующим количеством слотов типа PCI Express x16.

    Частота шины

    Частота шины — это общая пропускная способность материнской платы, и чем она выше, тем будет быстрее производительность всей системы. Учтите, что частота шины процессора должна соответствовать частоте шины материнской платы, в противном случае процессор с частотой шины выше, поддерживаемой материнской платой, работать не будет.

    Разъёмы для жёстких дисков

    Самым актуальным на сегодняшний день является SATA разъём для подключения жёстких дисков, который пришёл на смену старому разъёму IDE. В отличие от ИДЕ, САТА имеет более высокую скорость передачи данных. Современные разъёмы SATA 3 поддерживают скорость в 6 Гб/с. Чем больше SATA разъёмов, тем больше жёстких дисков вы сможете подключить к системной плате. Но учтите, что количество жёстких дисков может быть ограничено корпусом системного блока. Поэтому если вы хотите установить более двух винчестеров, то убедитесь, что такая возможность есть в корпусе.

    Несмотря на то, что разъём SATA активно вытесняет IDE, новые модели материнских карт всё равно комплектуют разъёмом IDE. В большей степени это делается для удобства апгрейда, то есть проведя обновление комплектующих компьютера, дабы сохранить всю имеющуюся информацию на старом жёстком диске с IDE разъёмом и не испытывать сложностей с её копированием.

    Если вы покупаете новый компьютер и планируете использовать старый жёсткий диск, то максимум рекомендуем его задействовать как дополнительный винчестер. Лучше всё-таки имеющуюся информацию переписать на новый HDD с SATA подключением, так как старый будет заметно тормозить работу всей системы.

    USB разъёмы

    Обратите внимание на количество USB разъёмов на задней панели материнской карты. Чем их больше, тем соответственно лучше, так как практически все существующие дополнительные устройства имеют именно USB разъём для подключения к компьютеру, а именно: клавиатуры, мышки, флешки, мобильный телефон, Wi-Fi адаптер, принтер, внешний жёсткий диск, модем и т.п. Чтобы задействовать все эти устройства необходимо достаточное количество разъёмов для каждого устройства.

    USB 3.0 — это новый стандарт передачи информации через USB интерфейс, скорость передачи данных достигает до 4.8 Гб/с.

    Звук

    Каждая материнская плата имеет звуковой контроллер. Если вы любитель послушать музыку, то рекомендуем выбирать материнскую плату с большим количеством звуковых каналов.

    • 2.0 – звуковая карта поддерживает стереозвук, две колонки или наушники;
    • 5.1 – звуковая карта поддерживает аудиосистему объёмного звука, а именно 2 передних динамика, 1 центральный канал, 2 задних динамика и сабвуфер;
    • 7.1 – поддержка системы объёмного звука, имеет такую же архитектуру как для работы системы 5.1, только добавляются боковые динамики.

    Если материнская карта имеет поддержку многоканальной аудиосистемы, то вы с лёгкостью сможете построить домашний кинотеатр на основе компьютера.

    Дополнительные функции

    Вентиляторы можно подключить к любой материнской плате, которая имеет разъёмы для вентиляторов (кулеров), для обеспечения надёжного и хорошего охлаждения всех внутренних комплектующих в системном блоке. Рекомендуется наличие нескольких таких разъёмов.

    Ethernet — это контроллер, установленный на материнской плате, с помощью него осуществляется подключение к интернету. Если вы планируете активно пользоваться интернетом, и ваш Интернет-провайдер поддерживает скорость в 1 Гбит/с, то покупайте материнскую плату с поддержкой такой скорости. А вообще, если вы покупаете материнскую плату на довольно длительный промежуток времени, и в ближайшие 3 года не планируете её менять, то лучше сразу брать карту с поддержкой гигабитной сети, учитывая темпы развития технологий.

    W i-F i встроенный модуль, понадобится поэтому если у вас есть WI-FI роутер. Купив такую материнскую плату, вы избавитесь от лишних проводов, но правда вай-фай не сможет порадовать вас высокой скоростью, как Ethernet.

    Bluetooth — весьма полезная штука, так как благодаря блютуз контролеру Вы сможете не только загружать контент с компьютера на свой мобильный телефон, а так же подключить беспроводные мышку и клавиатуру и даже Bluetooth-гарнитуру, тем самым избавившись от проводов.

    RAID контроллер — с ним можно не бояться за сохранность файлов на компьютере в случае поломки винчестера. Для включения этой технологии необходимо установить. как минимум 2 одинаковых жестких диска в режиме зеркала, и все данные с одного накопителя будут автоматически копироваться на другой.

    Твердотельные конденсаторы - это использование более стойких к нагрузке и температуре конденсаторов, содержащих полимер. У них больший срок службы и они лучше переносят высокую температуру. Практически все производители уже перешли на них при изготовлении материнских плат.

    Цифровая система питания — обеспечивает питание процессора и остальной схемы без перепадов и в достаточном объеме. На рынке присутствуют как дешевые цифровые блоки, которые ничем не лучше аналоговых, так и более дорогие и умелые. Понадобится, если у Вас слабый блок питания или некачественная электросеть, и Вы не пользуетесь UPS, или будете разгонять процессор.

    Кнопки для быстрого разгона — позволяют повышать частоту шины или подаваемое напряжение одним нажатием. Будет полезна оверклокерам.

    Защита от статического напряжения — эта проблема кажется несущественной, пока вы зимой не потянитесь к своему любимцу, предварительно сняв свитер. И хотя это происходит так нечасто, все же очень обидно сжечь плату одним неосторожным движением.

    Military Class — это прохождение тестирования платы в условиях повышенной влажности, сухости, холода, жары, перепада температуры и других стресс-тестов. Если материнская плата прошла все эти тесты, значит вывести из строя может разве что разряд молнии. Существую разные классы, отличающиеся набором пройденных испытаний.

    Многобиосность сохранит Вам деньги и нервы после неудачных опытов с BIOS или UEFI. В противном случае, вы получаете нерабочую плату. И для ее восстановления понадобится найти другую рабочую материнскую плату, желательно такого же типа. В многобиосных платах можно просто переключиться на резервную UEFI. В некоторых платах это реализовано как откат до изначального UEFI. Очень пригодится для любителей экспериментов.

    «Разогнанные» порты USB или LAN — это технология, встречающаяся практически на всех материнских платах. Заключается в том, что скорость USB увеличивается только при определенных условиях. А увеличение скорости сети LAN вы заметите только при уменьшении pingа в сетевых играх

    Ядро процессора определяется следующими характеристиками:

    • технологический процесс;
    • объем внутреннего кэша L1 и L2;
    • напряжение;
    • теплоотдача.

    Перед покупкой центрального процессора, необходимо удостовериться, что выбранная вами материнская плата сможет с ним работать.

    Примечательно, что одна линейка процессоров может содержать в себе ЦП, оснащенные разными ядрами. К примеру, в линейке Intel Core i5 имеются процессоры с ядрами Lynnfield, Clarkdale, Arrandale и Sandy Bridge.

    Что такое частота шины данных?

    Показатель частоты шины данных также обозначается как Front Side Bus (или сокращенно FSB ) .

    Шина данных - это набор сигнальных линий, предназначенных для передачи данных в и из процессора.

    Частота шины - это тактовая частота, с которой осуществляется обмен данными между процессором и системной шиной.

    Следует отметить, что процессоры применяют технологию Quad Pumping. Она дает возможность осуществлять передачу 4 блоков данных за один такт. Эффективная частота шины, при этом, возрастает вчетверо. Следует помнить, что для выше-обозначенных процессоров, в графе "частота шины" указывается увеличенный в 4 раза показатель.

    Процессоры компании AMD Athlon 64 и Opteron применяют технологию HyperTransport, которая дает возможность процессору и ОЗУ осуществлять эффективное взаимодействие. Данная система существенно повышает общую производительность.

    Что такое тактовая частота процессора?

    Тактовая частота процессора - это число операций процессора в секунду. Под операциями, в данном случае, подразумеваются такты. Показатель тактовой частоты пропорционален частоте шины (FSB).

    Обычно, чем выше тактовая частота, тем выше производительность. Однако, это правило работает только для моделей процессоров, принадлежащих одной линейке. Почему? В них, на производительность процессора, помимо частоты, оказывают влияние также такие параметры, как:

    • размер кэша второго уровня (L2);
    • присутствие и частота кэша третьего уровня (L3);
    • присутствие специальных инструкций и прочее...

    Диапазон тактовой частоты процессора: от 900 до 4200 МГц.

    Что такое техпроцесс?

    Техпроцесс - это масштаб технологии, определяющей габариты полупроводниковых элементов, составляющих базу внутренних цепей процессора. Цепи образуют соединенные между собой транзисторы.

    Пропорциональное сокращение габаритов транзисторов, по мере развития современных технологий, приводит к улучшению характеристик процессоров. К примеру, ядро Willamette, выполненное согласно техпроцессу 0.18 мкм, обладает 42 млн. транзисторов; ядро Prescott с техпроцессом 0.09 мкм, имеет уже 125 млн. транзисторов.

    Что такое величина тепловыделения процессора?

    Тепловыделение - это показатель отведенной системой охлаждения мощности для обеспечения нормального функционирования процессора. Чем выше значение данного параметра, тем сильнее греется процессор в ходе своей работы.

    Данный показатель крайне важно учитывать в случае завышения частоты центрального процессора. Процессор, обладающий низким тепловыделением, охлаждается быстрее, и, соответственно, разогнать его можно сильнее.

    Следует также учитывать, что производители процессоров измеряют показатель тепловыделения по-разному. Поэтому сравнение по этой характеристике уместно только в рамках одной компании-производителя.

    Диапазон тепловыделения процессора: от 10 до 165 Вт.

    Поддержка технологии Virtualization Technology

    Virtualization Technology - технология, позволяющая единовременную работу нескольких операционных систем на одном ПК.

    Так, благодаря технологии виртуализации, одна компьютерная система может функционировать в виде нескольких виртуальных.

    Поддержка технологии SSE4

    SSE4 - технология, включающая в себя пакет, состоящий из 54 новых команд, направленных на улучшение показателей производительности процессора в ходе выполнения им различных ресурсоемких задач.

    Поддержка технологии SSE3

    SSE3 - технология, включающая в себя пакет, состоящий из 13 новых команд. Их введение в новую генерацию направлено на улучшение показателей производительности процессора в части операций потоковой обработки данных.

    Поддержка технологии SSE2

    SSE2 - технология, включающая в себя пакет команд, дополняющий технологии своих "предшественников": SSE и MMX . Является разработкой корпорации Intel. Включенные в набор команды позволяют добиться существенного прироста производительности в приложениях, оптимизированных под SSE2. Данную технологию поддерживают практически все современные модели процессоров.

    Поддержка технологии NX Bit

    NX Bit - технология, способная предотвращать внедрение и исполнение вредоносного кода некоторых вирусов.

    Поддерживается операционной системой Windows XP SP2, а также всеми 64-битными ОС.

    Поддержка технологии HT (Hyper-Threading)

    Hyper-Threading - технология, дающая возможность процессору обрабатывать два потока команд параллельно, что существенно повышает эффективность выполнения определенных ресурсоемких приложений, связанных с многозадачностью (редактирование аудио и видео, 3D-моделирование и прочее). Впрочем, в некоторых приложениях применение данной технологии может произвести обратный эффект. Так, технология Hyper-Threading имеет опциональный характер, и в случае необходимости, пользователь может в любое время отключить ее. Автором разработки является компания Intel.

    Поддержка технологии AMD64/EM64T

    Процессоры, построенные на 64-битной архитектуре, могут работать как с 32-битными приложениями, так и с 64-битными, причем, с абсолютно одинаковой эффективностью.

    Примеры линеек x-64 процессоров: AMD Athlon 64, AMD Opteron, Core 2 Duo, Intel Xeon 64 и другие.

    Минимальный объем оперативной памяти для процессоров, поддерживающих 64-битную адресацию, составляет 4 Гб . Такие параметры недоступны для традиционных 32-битных процессоров. Чтобы активировать работу 64-битных процессоров, необходимо, чтобы операционная система была под них адаптирована, то есть, тоже имела x64-архитектуру.

    Названия реализации 64-битных расширений в процессорах:

    • Intel - EM64T .
    Поддержка технологии 3DNow!

    3DNow! - технология, вмещающая в себя пакет, состоящий из 21 дополнительной команды для обработки мультимедиа. Главной целью данной технологии является улучшение процесса обработки мультимедийных приложений.

    Технология 3DNow! реализована исключительно в процессорах компании AMD.

    Что такое объем кэша L3?

    Под объемом кэша L3 подразумевается кэш-память третьего уровня.

    Оснащаясь быстродействующей системной шиной, кэш-память L3 образует высокоскоростной канал для обмена данными с системной памятью.

    Обычно, кэш-памятью L3 комплектуются лишь топовые процессоры и серверные системы. К примеру, такие линейки процессоров, как AMD Opteron, AMD Phenom, AMD Phenom II, Intel Core i3, Intel Core i5, Intel Core i7, Intel Xeon.

    Диапазон объема кэша L3: от 0 до 30720 Кб.

    Что такое объем кэша L2?

    Под объемом кэша L2 подразумевается кэш-память второго уровня.

    Кэш-память второго уровня представляет собой блок высокоскоростной памяти, выполняющий аналогичные кэшу L1 функции. Данный блок обладает более низкой скоростью, а также отличается бóльшим объемом.

    Если пользователю необходим процессор для выполнения ресурсоемких задач, то следует выбирать модель с большим объемом кэша L2.

    В моделях процессоров, обладающих несколькими ядрами, указывается общий объем кэш-памяти второго уровня.

    Диапазон объема кэша L2: от 128 до 16384 Кб.

    Что такое объем кэша L1?

    Под объемом кэша L1 подразумевается кэш-память первого уровня.

    Кэш-память первого уровня представляет собой блок высокоскоростной памяти, находящийся непосредственно на ядре процессора. В этот блок производится копирование извлеченных из оперативной памяти данных. Обработка данных из кэша осуществляется в разы быстрее, чем обработка данных из оперативной памяти.

    Кэш память дает возможность повысить производительность процессора за счет более высокой скорости обработки данных. Кэш-память первого уровня исчисляется килобайтами, она довольно небольшая. Как правило, "старшие" модели процессоров оснащены кэш-памятью L1 большего объема.

    В моделях процессоров, обладающих несколькими ядрами, объем кэш-памяти первого уровня указывается всегда для одного ядра.

    Диапазон объемов кэша L1: от 8 до 128 Кб.

    Номинальное напряжение питания ядра процессора

    Данный параметр обозначает напряжение, необходимое процессору для его работы. Им характеризуется энергопотребление процессора. Этот параметр особенно важно учитывать при выборе процессора для мобильной и нестационарной системы.

    Единица измерения - Вольты.

    Диапазон напряжения ядра: от 0.45 до 1.75 В.

    Максимальная рабочая температура

    Это показатель максимально допустимой температуры поверхности процессора, при которой возможна его работа. Температура поверхности зависит от загруженности процессора, а также от качества теплоотвода.

    • При нормальном охлаждении, температура процессора находится в диапазоне 25-40°C (холостой режим);
    • При большой загруженности температура может достигать 60-70 °C.

    Процессоры с высокой рабочей температурой требуют установки мощных систем охлаждения.

    Диапазон максимальной рабочей температуры процессора: от 54.8 до 105.0 °C.

    Что такое линейка процессора?

    Каждый процессор относится к определенному модельному ряду или линейке. В рамках одной линейки, процессоры могут серьезно отличаться друг от друга по целому ряду характеристик. Каждый производитель имеет линейку недорогих процессоров. Скажем, у Intel это Celeron и Core Solo; у AMD - Sempron .

    Процессоры бюджетных линеек, в отличие от более дорогих "собратьев", не имеют некоторых функций, а их параметры - обладают меньшими значениями. Так, в недорогих процессорах может быть существенно уменьшенная кэш-память, более того, она может и вовсе отсутствовать.

    Бюджетные линейки процессоров подходят для офисных компьютеров, не предполагающих работы с большими нагрузками и масштабными задачами. Более ресурсоемкие задачи (обработка видео /аудио) требуют установки "старших" линеек. К примеру, Core 2 Duo, Core 2 Quad, Core i3, Core i5, Core i7, Phenom X3, Phenom X4, Phenom II X4, Phenom II X6 и т.д.

    Серверные материнские платы, обычно, используют специализированные линейки процессоров: Opteron , Xeon и им подобные.

    Что такое коэффициент умножения процессора?

    На основании коэффициента умножения процессора осуществляется подсчет итоговой тактовой частоты его работы.

    Тактовая частота процессора = частота шины (FSB) * коэффициент умножения.

    К примеру, частота шины (FSB) составляет 533 Mhz, а коэффициент умножения - 4.5. Так, 533*4.5= 2398,5 Mгц. Получаем тактовую частоту работы процессора.

    В большинстве современных процессоров этот параметр заблокирован на уровне ядра, он не подлежит изменению.

    Следует также отметить, что процессоры типа Intel Pentium 4, Pentium M, Pentium D, Pentium EE, Xeon, Core и Core 2 применяют технологию Quad Pumping (передача 4-х блоков данных за один такт). В данном случае, эффективная частота шины возрастает, соответственно, в 4 раза. В поле "Частота шины", в случае с выше-приведенными процессорами, указывается увеличенная в четыре раза частота шины. Чтобы получить показатель физической частоты шины, необходимо эффективную частоту разделить на 4.

    Диапазон коэффициента умножения: от 6.0 до 37.0.

    Число ядер в процессоре

    Современные технологии производства процессоров позволяют размещать несколько ядер в одном корпусе. Чем больше ядер имеет процессор, тем выше его производительность. К примеру, в серии Core 2 Duo применяются 2-ядерные процессоры, а в линейке Core 2 Quad - 4-ядерные.

    Диапазон количества ядер в процессоре: от 1 до 16.

    Что такое Socket (сокет)?

    Каждая материнская плата оснащена разъемом определенного типа, предназначенным для установки процессора. Этот разъем и называется сокетом. Обычно, тип сокета определяется числом ножек, а также компанией-производителем процессора. Различные сокеты соответствуют различным типам процессоров.

    В настоящее время, производители процессоров применяют следующие типы сокетов:

    Intel

    • LGA1155;
    • LGA2011.

    AMD

    • AM3+;
    • FM1.
    Температура процессора постепенно растет со временем.Какие меры наиболее эффективны для снижения температуры процессора?

    В зависимости от условий эксплуатации техники, часто возникает ситуация что радиаторы и забиваются пылью, грязью, термоинтерфейс изменяет свои свойства теплопроводности, крепления радиатора слабеют, иногда не равномерно.

    В этом случае, необходимо, при подозрении на перегрев, снять систему охлаждения, отчистить радиаторы, поправить крепления, заменить термопасту.Также снизить температуру в корпусе, сменить вентилятор процессорного кулера на более мощный или, если конструкция позволяет, сменить кулер, добавить корпусный кулер на вдув и\или на выдув.

    Как определить, что термозащита в действии?

    Существует два способа. Первый - программный. Запускаем TAT (Intel Thermal Analysis Tool) для процессоров семейства Core, RMClock для всех остальных и следите за сообщениями в TAT и за графиком во второй. Как только сработает термозащита, TAT выдаст предупреждение, а в мониторинге RMClock появится график CPU Throttle.

    Второй способ - опосредованный. Основан на том, что включение термозащиты, особенно
    троттлинга, обязательно сопровождается сильным падением производительности процессора.

    Температура первого ядра в Х-ядерном процессоре выше на несколько °C, по сравнению со вторым. Чем это объяснить?

    Это нормально. Ядро, использующееся в первую очередь, загружено типично больше, поэтому
    и нагревается соответственно больше.